A Coarse-Grained Model for Optimal Coupling of ASR and SMT Systems for Speech Translation

نویسندگان

  • Gaurav Kumar
  • Graeme W. Blackwood
  • Jan Trmal
  • Daniel Povey
  • Sanjeev Khudanpur
چکیده

Speech translation is conventionally carried out by cascading an automatic speech recognition (ASR) and a statistical machine translation (SMT) system. The hypotheses chosen for translation are based on the ASR system’s acoustic and language model scores, and typically optimized for word error rate, ignoring the intended downstream use: automatic translation. In this paper, we present a coarseto-fine model that uses features from the ASR and SMT systems to optimize this coupling. We demonstrate that several standard features utilized by ASR and SMT systems can be used in such a model at the speech-translation interface, and we provide empirical results on the Fisher Spanish-English speech translation corpus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation on the effects of ASR tuning on speech translation performance

In this paper we describe some of our recent investigations into ASR and SMT coupling issues from an ASR perspective. Our study was motivated by several areas: Firstly, to understand how standard ASR tuning procedures effect the SMT performance and whether it is safe to perform this tuning in isolation. Secondly, to investigate how vocabulary and segmentation mismatches between the ASR and SMT ...

متن کامل

Statistical Machine Translation and Automatic Speech Recognition under Uncertainty

Statistical modeling techniques have been applied successfully to natural language processing tasks such as automatic speech recognition (ASR) and statistical machine translation (SMT). Since most statistical approaches rely heavily on availability of data and the underlying model assumptions, reduction in uncertainty is critical to their optimal performance. In speech translation, the uncertai...

متن کامل

Using Word Lattice Information for a Tighter Coupling in Speech Translation Systems

In this paper we present first experiments towards a tighter coupling between Automatic Speech Recognition (ASR) and Statistical Machine Translation (SMT) to improve the overall performance of our speech translation system. In coventional speech translation systems, the recognizer outputs a single hypothesis which is then translated by the SMT system. This approach has the limitation of being l...

متن کامل

Using word latice information for a tighter coupling in speech translation systems

In this paper we present first experiments towards a tighter coupling between Automatic Speech Recognition (ASR) and Statistical Machine Translation (SMT) to improve the overall performance of our speech translation system. In coventional speech translation systems, the recognizer outputs a single hypothesis which is then translated by the SMT system. This approach has the limitation of being l...

متن کامل

Assessing the Impact of Speech Recognition Errors on Machine Translation Quality

In spoken language translation, it is crucial that an automatic speech recognition (ASR) system produces outputs that can be adequately translated by a statistical machine translation (SMT) system. While word error rate (WER) is the standard metric of ASR quality, the assumption that each ASR error type is weighted equally is violated in a SMT system that relies on structured input. In this pap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015